
Five Common Mistakes when Conducting
Software Failure Modes Effects Analysis

Ann Marie Neufelder
SoftRel, LLC

amneufelder@softrel.com
http://www.softrel.com

© SoftRel, LLC 2019. This presentation may not be reprinted in whole or part without
written permission from amneufelder@softrel.com

mailto:amneufelder@softrel.com

Five Common
Mistakes when
Conducting
Software Failure
Modes Effects
Analysis

• The software FMECA is a powerful tool for
identifying software failure modes but
there are 5 common mistakes that can
derail the effectiveness of the analysis.
• #1 - Software is analyzed as a black box

(and shouldn't be).
• #2 - It's assumed that the software will

work as expected
• #3 - It's conducted far too late in

development life cycle
• #4 - It's conducted at wrong level of

abstraction
• #5 - The most common failure modes

aren't considered

Copyright SoftRel, LLC 2019 2

#1 - Software is
analyzed as a
black box (and
shouldn’t be).

•The single most common mistake is
to analyze the software based on
what it "is" instead of what it "does".

•The black box approach is common
for hardware FMECA.
•However, it doesn't work well for
software.

•Software doesn't wear out - it fails
because the code doesn't perform
the required functions.

•Hence, it must be analyzed from a
functionality versus black box
standpoint.

Copyright SoftRel, LLC 2019 3

#1 - Software is analyzed as a black box (and shouldn’t be).

Examples of “Black box” SFMECA which should be avoided.

Copyright SoftRel, LLC 2019 4

LRU Failure mode Recommendation

Turret
CSCI

CSCI fails to
execute

Doesn’t address states, timing,
missing functionality, wrong data,
faulty error handling, etc.

Turret
CSCI

CSCI fails to
perform
required
function

CSCI performs far too many
features and functions. List each
feature and what can go wrong
instead.

Example of a use case to move a turret analyzed based on what it
does/doesn’t do and not what it is

Copyright SoftRel, LLC 2019 5

Use
Case

Failure mode Root causes

Move
turret

Faulty timing • Turret moves too late
• Turret moves too early

Faulty sequencing
and state
management

• Turret moves inadvertently
• Turret fails to move when commanded

Faulty error
handling

• Turret exceeds the maximum range allowed
• Failures in turret hardware aren’t detected

Faulty processing Turret moves upon startup after an abnormal shutdown

Faulty data • Turret moves to the wrong location because of
improperly formatted, improperly scaled or null data

• Turret comes too close to a hard stop because of
overly tight specifications

• Turret doesn’t move the entire spectrum of possible
radians

Faulty functionality Use case doesn’t meet the system requirements

#2 - It's assumed
that the
software will
work as
expected

• The "software" FMECA focuses on how
the "software" fails.

• Yet many analysts assume that the
software will work perfectly.

• There's no point in doing a "software"
FMECA if you're going to assume that
the software always works.

• One must assume that
1) Unwritten assumptions will lead to
failures
2) If an important detail isn't in writing it
won't get coded or tested
3) If the requirements don't discuss fault
handling the software won't handle
faults
4) even when the requirements are
complete, the code may not be written
to meet the requirements.

Copyright SoftRel, LLC 2019 6

Example: Unwritten assumptions in the software
requirements leading to a failure

Satellite is lost at a cost of $186 million.

Engine continues to operate until fuel is
consumed

First stage of launch on 10/8/05 is successful.
Second stage stops performing when required
command to cut off main engine doesn’t occur.

SRS specifications missing requirement for main
engine cutoff

Copyright SoftRel, LLC 2019

CryoSat-1

Presenter
Presentation Notes
On October 8th, 2005, The European Space Agency's CryoSat-1 satellite was lost shortly after launching. The first stage of the launched performed normally. The second stage also performed normally until the main engine cut-off was supposed to occur. The main engine continued to operate because the Flight Control System was missing a command from the on-board flight control system to the main engine. Because of that, the engine continued to operate until the fuel was consumed. The cost of the satellite was $186 million It’s unclear why the simulator used for testing did not uncover this failure mode. It’s possible that the simulator had the very same fault or that the software testers simply overlooked this fault. In any case, a “missing” command would certainly be visible during a bottom up review of the requirements, detailed design or code but only if the software engineers are looking at these product documents through the failure space. [CRYOSAT].

Example: Important details missing from requirements
won’t get coded or tested

This is the specification for the logging feature:
1) The software shall log all warnings, failures and successful missions.

2) At least 8 hours of operation shall be captured

3) Logging to an SD card shall be supported in addition to logging to the
computer drive

This is what you know about the software organization and software itself

1) Logging function will be called from nearly every use case since nearly every
use case checks for warnings, failures and successes

2) Testing will cover the requirements. But no plans to cover stress testing,
endurance testing, path testing, fault insertion testing.

3) Software engineers have discretion to test their code as they see fit.

4) There is a coding standard but there is no enforcement of it through
automated tools and code reviews only cover a fraction of the code

Example: Important details missing from requirements won’t get coded
or tested

• These are the faults that can/will fall through the cracks
• No checking of read/write errors, file open, file exist errors which are common
• No rollover of log files once drive is full (may be beyond 8 hours)
• No checking of SD card (not present, not working)
• Logging when heavy usage versus light or normal usage (might take less than 8 hours

to fill drive if heavy usage)

• This is why these faults aren’t found prior to operation
• No one is required to explicitly test these faults
• No one is required to review the code for this fault checking
• No one is required to test beyond 8 hours of operation

• This is the effect if any of these faults happens
• Entire system is down because it crashes on nearly every function once drive is full, SD

card removed, file is open or read/write errors

• With the SFMEA you cannot assume that best practices will be followed unless
there is a means to guarantee that. Even when that’s the case the root cause
should be tracked.

Example: If the requirements don't discuss fault handling
the software won't handle faults

• This state diagram based on the written software requirements, doesn’t
have a faulty state or transitions to/from a faulty state

• Hence, these faults are unlikely to be handled in design, code or test plan

• The SFMECA should not assume otherwise

Copyright SoftRel, LLC 2019 10

Initialization

Ready

Prepare for
launch

Launch

Fails to account for initialization failures in
HW, SW

Fails to account for failures in
launch preparation

Fails to account for launch
failures such as hang fire,
misfire, etc

Example: Even when the requirements are complete, the
code may not be written to meet the requirements

Cost = $18.5 million of 1962 dollars.

Rocket destroyed 293 seconds after liftoff.

Faulty corrections sent the rocket off course.

Without the smoothing function the software
treated normal variations in velocity as if they
were serious.

The requirements document clearly indicated an
overbar which was supposed to be an averaging
function of velocity. However, the programmer
ignored the superscript when transcribing the
formula into code.

Copyright SoftRel, LLC 2019

Mariner 1 rocket failure in 1962.

Presenter
Presentation Notes
The Mariner 1 rocket with a space probe headed for Venus diverted from its intended flight path shortly after launch. The rocket was destroyed less than 5 minutes after liftoff. The failure was apparently due to a missing overbar in a formula. This fault is commonly referred to as the “hyphen” fault because the hyphen and the overbar look similar when programmed. The handwritten formula was correct but the programmer had missed the superscript bar when transcribing the formula into code. The missing overbar would have provided a smoothing function. Without the smoothing function the software treated normal variations in velocity as if they were serious which caused faulty corrections that sent the rocket off course. The cost of the missing superscript or hyphen was $18.5 million. It has since been called the most expensive hyphen in history.

#3 It's conducted
far too late in the
development life
cycle

• The perfect time to conduct a software FMECA
is immediately after the first pass of the
software requirements/use cases and before
the code is written to those requirements.

• Typically the first pass of the SRS and use cases
is when the "shalls" are defined.

• In the second pass is when the "shall nots" or
alternative flows should be defined.

• The SFMECA can be used to strengthen the
requirements and can even be used as a
requirements review tool.

• If SFMECA is conducted after code is written
• Less effective but still time to effect test

procedures

• If SFMECA is conducted after testing is finished
• Significantly less effective – can only effect

user training or next release of software
Copyright SoftRel, LLC 2019 12

#4 It's conducted
at the wrong level
of abstraction

• Some analysts work through the code
one line at a time and analyze how that
single line of code could fail.

• For software functions that are associated
with particularly high hazards that may be
appropriate but not necessarily sufficient.

• When analyzing one line of code at a time
the analyst misses the failure modes due
to
• 1) required code is missing altogether
• 2) defects that are caused by more than

one line of code.

• Effective software FMECAs focus on the
requirements, use cases, interfaces,
detailed design and usability.

Copyright SoftRel, LLC 2019 13

Focusing at too high or too level a level of abstraction

Copyright SoftRel, LLC 2019

System
requirements

Software
requirements

Software interface design

Software design – state diagrams,
timing diagrams, sequence diagrams,

DB design, GUI design

Module and class design

Line of code

Functions, procedures (code)

Not enough
coverage across

the software
and not enough

coverage of
design or

software only
requirements

Analyzing one
line of code at

a time has
potential to

miss the
design and

requirements
related faults

Presenter
Presentation Notes
Focusing on the system requirements carries the risk that the analysis won’t cover the spectrum of software features. Hence, since it doesn’t cover the software requirements it won’t provide coverage of the design either. At the other extreme, focusing on one line of code at a time isn’t effective either. Firstly, with systems today being in the millions or tens of millions of lines of code, it would be labor intensive to cover every line of code. The biggest risk, however, is that by focusing on the code, the analyst won’t notice whether the code actually does the required function as per the required design constraints. The code can and will be visited during a detailed, maintenance and vulnerability FMEA. However, it isn’t analyzed one line at a time. It’s analyzed as a cohesive function to determine if it meets the requirements, has vulnerabilities or has changes which will cause new defects.

What to focus on and when
FMEA Viewpoints

Level of architecture
applicable for
viewpoint

Failure Modes When focusing on this is
most effective

The use cases, system
and software
requirements

The system does not do
it’s required function or
does the wrong function

New requirements or new
system. Major changes to
an existing system.

The interface design The system components
aren’t synchronized or
compatible

Many components
developed by more than
one organization.

The detailed design or
code

The design and/or code
isn’t implemented to the
requirements or design

When there is detailed
logic or algorithms that
are mission critical – i.e.
launch calculator.

The ability for the
software to be
consistent and user
friendly

The end user causes a
system failure because of
the software interface

When the user can cause a
failure or when lack of
usability can cause a
mission failure

Presenter
Presentation Notes
The analyst will be analyzing the system and software requirements with the functional viewpoint. The key failure mode associated with this viewpoint is that the software does not do it’s required function. There are other failure modes as shown later in this presentation. The interface failure mode focuses on the interface design. It’s key failure mode is that a system component (of at least one of which is the software) is out of sync with another key component. The detailed and maintenance software FMEA viewpoints are the most detailed of the viewpoints. In both analyses the detailed design or code is the focus of the analysis. The key detailed design failure mode is that the detailed design or code is not implemented in accordance with the requirements. There are numerous other failure modes at this viewpoint. The key maintenance related failure mode is that change to the detailed design or code will cause a new defect in the code. The usability, serviceability and vulnerability viewpoints are all related to certain attributes of the software such as how easy it is to use, install or protect. The key failure modes are users who cause system failures because the software is difficult to use, software that doesn’t work properly because it’s not installed properly and software that allows for sensitive information to be leaked or for it’s functionality to be compromised by a malicious user. Finally the only process related viewpoint is the software production viewpoint which is analogous to the manufacturing process for hardware. The failure modes pertaining to the production process are related to how software defects can escape to an operational environment without detection in any of the software development and test activities. It’s important to note that any software fault will have at least one product related failure mode/root cause and at least one process related failure mode/root cause. When conducting the analysis it is essential that the analysis not confuse or combined process related failure modes with product related failure modes. For example, a fault caused by a race condition has 2 failure modes. The product related failure mode is that the code was written so that a variable is written to by more than one part of the code at the same time. The process related failure mode is that the race condition isn’t identified during testing because of insufficient test cases. When one is performing one of the top 7 software FMEAs one must focus on the product related failure modes. The process related failure modes are analyzed separately as part of the production process FMEA.

Use cases are highly recommended
•Use cases have been proven to reduce software defects

because they “visualize” the software requirements in
terms of sequence, timing, and data
• Software engineers can visualize how the software works better

with use cases then with only a list of text software requirements

•Use cases also increase software FMEA effectiveness
• Software FMEA analysts can visualize what can go wrong faster with

use cases then with only a list of text software requirements
• Failure modes that span across the requirements easier to identify
• Failure modes related to missing level of detail easier to identify
• Failure modes related to faulty error handling easier to identify
• Failure modes related to sequence easier to identify
• Failure modes related to flow of data easier to identify

12/15/2019

SFMEAs are most effective when boundary
determined in advance of analysis
• Example – a System of System is comprised of several elements

• System of system level SFMEA would focus on all of these elements
interfacing with each other

• Element level SFMEA would focus on just one of these elements

• Component level would focus on a part of one element such as the turret
in a missile launcher

12/15/2019

#5 The most
common failure
modes aren't
considered

• The most common failure modes that apply to
all software intensive systems are:
• Faulty functionality - missing required

functionality, function doesn't work as
required

• Faulty processing - can't perform after an
interruption of service or extended usage

• Faulty error handling - doesn't
handle hardware, interfaces, software or
user faults

• Faulty state management - executes when it
shouldn't, encounters dead states, faulty
state transitions, etc.

• Faulty timing - race conditions, a function
executes too early, too late, accumulates
timing errors when left on too long, etc.

• Faulty data isn’t handled - missing, corrupt,
improperly sized, improperly formatted,
improperly scaled data isn't handledCopyright SoftRel, LLC 2019 18

Tip: The most
common
failure
modes/root
causes are
related to
weakest link
of
development

Copyright SoftRel, LLC 2019 19

Weak development area Common
failure
modes/root
causes

Design is conducted after code is
written or is too high level. No logic
diagrams when needed.

Faulty logic

Requirements/Design/Use cases
doesn’t describe detailed state
transitions, faulty states, prohibited
states

Faulty state
management

Requirements/Design/Use cases
doesn’t cover error handling,
alternative flows

Faulty error
handling

Requirements/Design/Use cases don’t
cover data definitions or interface data

Faulty data not
handled

Requirements are too high level Faulty
functionality

No timing diagrams on timing sensitive
software

Faulty timing

Tip: Identify software related failure
modes by working backwards

12/15/2019

Element level events Software Related Failure mode
Missile misfires • Faulty processing - Software aborts during

specific points of missile releaseMissile hang fires
Missile misses target
trajectory

• Faulty timing - Missile launches too early or too
late

• Faulty data - Launch calculator can’t handle
faulty data

• Faulty algorithm in launch calculator
Missile fails to launch when
commanded

• Faulty state transitions with missile launching
software

Missile launches when not
commanded
Turret moves when not
commanded

• Faulty state transitions with turret movement

Tip:
Identify
software
related
root
causes by
working
backwards

12/15/2019

Failure mode Root causes
Faulty processing
- Software aborts
during specific
points of missile
release

Software crashes, computer is
shut down or loses power, end
user aborts mission

Missile launches
too early
Missile launches
too late

Response parameters are too
short
Response time parameters are
too long
Software processing is sluggish
Software built up time
inaccuracy

Launch calculator
can’t handle
faulty data

Calculator has incorrect
specification for algorithm

Launch calculator
has faulty
algorithm

Calculator has correct
specification for algorithm but
incorrect implementation

Tip:
Identify
software
related
root
causes by
working
backwards

12/15/2019

Failure mode Root causes
Faulty state
transitions with
missile launching
software

• Launch software is missing
code for specified state
transition

• Launch software is missing
a required state transition in
specifications

• Prohibited state transitions
allowed

• More than one path to
launch

Faulty state
transitions with
missile launching
software

Launch software doesn’t check
for required launch conditions
prior to launch

Faulty state
transitions with
turret movement

Software doesn’t stow when
commanded or doesn’t stow
when it should

Just a few
examples
of failure
modes that
causes
major
failure
events

Copyright SoftRel, LLC 2019

Failure Event Associated failure mode

Several patients suffered
radiation overdose from the
Therac 25 equipment in the
mid-1980s. [THERAC]

Faulty timing - A race condition combined
with ambiguous error messages and
missing hardware overrides.

AT&T long distance service was
down for 9 hours in January
1991. [AT&T]

Faulty sequencing - An improperly placed
“break” statement was introduced into
the code while making another change.

Ariane 5 Explosion in 1996.
[ARIAN5]

Faulty data - An unhandled mismatch
between 64 bit and 16 bit format.

Faulty error handling – One size fits all
reboot

NASA Mars Climate Orbiter
crash in 1999.[MARS]

Faulty data - Metric/English unit
mismatch. Mars Climate Orbiter was
written to take thrust instructions using
the metric unit Newton (N), while the
software on the ground that generated
those instructions used the Imperial
measure pound-force (lbf).

On October 8th, 2005, The
European Space Agency's
CryoSat-1 satellite was lost
shortly after launching.
[CRYOSAT]

Faulty functionality - Flight Control
System code was missing a required
command from the on-board flight
control system to the main engine.

A rail car fire in a major
underground metro system in
April 2007. [RAILCAR]

Faulty error handling - Missing error
detection and recovery by the software.

Presenter
Presentation Notes
Over the last 5 decades there have been many system failures due to software. This page shows just a few of them. Your book describes several of them. However, your book and this presentation only scratches the surface. For every software related event that is in the public domain it’s suspected that several more or not in the public domain due to security and confidentiality.

Number 6-10 on common causes for ineffective
SFMEA
6. Not following up with the root-causes and

mitigations identified
7. Assigning the analysis to a person who doesn’t have

experience with software development
8. Too much time spent on analyzing the

probability/frequency when analyzing controls is
what’s important

9. Assigning the analysis to exactly one person
10.Trying to apply the SFMEA to everything or picking

an arbitrary starting point

Copyright SoftRel, LLC 2019 24

More resources
• Effective Application of Software Failure

Modes Effects Analysis
• https://www.quanterion.com/product/pu

blications/effective-application-of-
software-failure-modes-effects-analysis/

• Software reliability and software FMEA
bootcamp. January 28th through January
30th, 2020 Huntsville, Alabama.
• Download course outline.
• Government employee registration.
• Non-Government employee

• Software Reliability Bootcamp –
Huntsville, AL January 28-30th 2020

Copyright Softrel, LLC 2019

https://www.quanterion.com/product/publications/effective-application-of-software-failure-modes-effects-analysis/
http://www.softrel.com/classoutlines.pdf
https://secure.2checkout.com/checkout/buy?merchant=425300&tpl=default&prod=10004&qty=1
https://secure.2checkout.com/checkout/buy?merchant=425300&tpl=default&prod=10003&qty=1

References
• [MARINER]Parker, P. J., “Spacecraft to Mars”, Spaceflight, 12, No. 8, 320-

321, Aug. 1970
http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=MARIN1

• [CRYOSAT] "CryoSat Mission lost due to launch failure". European Space
Agency. 8 October 2005. Retrieved 19 July2010.

http://www.esa.int/Our_Activities/Observing_the_Earth/CryoSat/CryoSat_
Mission_lost_due_to_launch_failure

http://news.bbc.co.uk/2/hi/science/nature/4381840.stm

Copyright SoftRel, LLC 2019 26

http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=MARIN1
http://www.esa.int/Our_Activities/Observing_the_Earth/CryoSat/CryoSat_Mission_lost_due_to_launch_failure
http://news.bbc.co.uk/2/hi/science/nature/4381840.stm

	Slide Number 1
	Five Common Mistakes when Conducting Software Failure Modes Effects Analysis
	#1 - Software is analyzed as a black box (and shouldn’t be).
	#1 - Software is analyzed as a black box (and shouldn’t be).
	�
	#2 - It's assumed that the software will work as expected
	Example: Unwritten assumptions in the software requirements leading to a failure
	Example: Important details missing from requirements won’t get coded or tested
	Example: Important details missing from requirements won’t get coded or tested
	Example: If the requirements don't discuss fault handling the software won't handle faults
	Example: Even when the requirements are complete, the code may not be written to meet the requirements
	#3 It's conducted far too late in the development life cycle�
	#4 It's conducted at the wrong level of abstraction
	Focusing at too high or too level a level of abstraction
	What to focus on and when
	Use cases are highly recommended
	SFMEAs are most effective when boundary determined in advance of analysis
	#5 The most common failure modes aren't considered
	Tip: The most common failure modes/root causes are related to weakest link of development
	Tip: Identify software related failure modes by working backwards
	Tip: Identify software related root causes by working backwards
	Tip: Identify software related root causes by working backwards
	Just a few examples of failure modes that causes major failure events
	Number 6-10 on common causes for ineffective SFMEA
	More resources
	References

